Bpm Design and Impedance Considerations for a Rotatable Collimator for the Lhc Collimation Upgrade

نویسندگان

  • Jeffrey Claiborne
  • Lewis Keller
  • Steven Lundgren
  • Thomas Markiewicz
  • Andrew Young
چکیده

The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite secondary collimators with 30 high Z Phase II collimators. This paper reports on BPM and impedance considerations and measurements of the integrated BPMs in the prototype rotatable collimator to be installed in the Super Proton Synchrotron (SPS) at CERN. The BPMs are necessary to align the jaws with the beam. Without careful design the beam impedance can result in unacceptable heating of the chamber wall or beam instabilities. The impedance measurements involve utilizing both a single displaced wire and two wires excited in opposite phase to disentangle the driving and detuning transverse impedances. Trapped mode resonances and longitudinal impedance are to also be measured and compared with simulations. These measurements, when completed, will demonstrate the device is fully operational and has the impedance characteristics and BPM performance acceptable for installation in the SPS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical and Thermal Prototype Testing for a Rotatable Collimator for the Lhc Phase Ii Collimation Upgrade∗

The Phase II upgrade to the LHC collimation system calls for complementing the robust Phase I graphite collimators with high Z, low impedance Phase II collimators. The design for the collimation upgrade has not been finalized. One option is to use metallic rotatable collimators and testing of this design will be discussed here. The Phase II collimators must be robust in various operating condit...

متن کامل

Bench-top Impedance Measurements for a Rotatable Copper Collimator for the Lhc Phase Ii Collimation Upgrade∗

Simulations have been performed in Omega3P to study both trapped modes and impedance contributions of a rotatable collimator for the LHC phase II collimation upgrade. Bench-top stretched coil probe impedance methods are also being implemented for measurements on prototype components to directly measure the low frequency impedance contributions. The collimator design also calls for a RF contact ...

متن کامل

Trapped Mode Study for a Rotatable Collimator Design for the Lhc Upgrade*

A rotatable collimator is proposed for the LHC phase II collimation upgrade. When the beam crosses the collimator, it will excite trapped modes that can contribute to the beam energy loss and power dissipation on the vacuum chamber wall. Transverse trapped modes can also generate transverse kicks on the beam and may thus affect the beam quality. In this paper, the parallel eigensolver code Omeg...

متن کامل

Collimation with Hollow Electron Beams: A Proposed Design for the LHC Upgrade

Collimation with hollow electron beams is a technique for halo removal in high-power hadron beams. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, we are investigating the applicability of this technique to...

متن کامل

Crab Compensation for Lhc Beams

An R&D program to establish a road map for the installation of crab cavities in the LHC is rapidly advancing. Both local and global crab schemes are under investigation to develop cavities that will be compatible with the LHC optics and meet the aperture requirements. Space and aperture constraints to accommodate a prototype crab cavity in the LHC along with related optics issues are presented....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010